水泥基材料流变性能研究进展

Authors

  • 卞宇轩 鲁东大学
  • 郭可敖 鲁东大学
  • 胡世聪 鲁东大学
  • 李英杰 鲁东大学
  • 王在林 鲁东大学
  • 邵建文 鲁东大学

DOI:

https://doi.org/10.70693/cjst.v1i1.909

Keywords:

混凝土;流变性能;影响因素;测试方法;流变模型

Abstract

混凝土作为建筑工程中应用最广泛的建筑材料,其流变性能直接影响施工可操作性、成型质量及硬化后的力学性能。本文系统综述了水泥基材料流变性能的研究进展,梳理了流变学理论的发展历程,重点对比了宾汉姆模型和赫谢尔-巴尔克莱模型等主流流变模型的适用性与局限性;进一步详细分析了屈服应力、塑性黏度等关键流变参数的影响机制,从材料组分和测试方法两方面探讨了流变性能的调控策略。研究表明,通过流变模型的非线性修正和多尺度表征可更准确描述混凝土的流动行为,矿物掺合料与化学外加剂的协同作用能显著调控流变参数,而现代测试技术与机器学习方法的结合可有效提升参数预测精度。本文为水泥基材料的流变学理论完善和施工工艺优化提供了重要参考,并对未来智能调控和极端环境适应性等研究方向提出了建议。

References

Robalo K, Soldado E, Costa H, et al. Efficiency of cement content and of compactness on mechanical performance of low cement concrete designed with packing optimization[J]. Construction and Building Materials, 2021, 266: 121077.

Ferraris C F. Measurement of the rheological properties of high performance concrete: state of the art report[J]. Journal of research of the national institute of standards and technology, 1999, 104(5): 461.

Roussel N, Coussot P. “Fifty-cent rheometer” for yield stress measurements: from slump to spreading flow[J]. Journal of rheology, 2005, 49(3): 705-718.

Feys D, Cepuritis R, Jacobsen S, et al. Measuring rheological properties of cement pastes: most common techniques, procedures and challenges[J]. RILEM technical letters, 2017, 2: 129-135.

Khayat K H. Viscosity-enhancing admixtures for cement-based materials—An overview[J]. Cement and Concrete Composites, 1998, 20(2-3): 171-188.

Banfill P, Beaupré D, Chapdelaine F, et al. Comparison of concrete rheometers[J]. International tests at LCPC, Paris, 2000

刘豫, 史才军, 焦登武, 等. 新拌水泥基材料的流变特性, 模型和测试研究进展[J]. 硅酸盐学报, 2017, 45(5): 708-716.

Banfill P F G. The rheology of fresh mortar[J]. Magazine of concrete research, 1991, 43(154): 13-21.

Herschel W H, Bulkley R. Konsistenzmessungen von gummi-benzollösungen[J]. Kolloid-Zeitschrift, 1926, 39: 291-300.

Wallevik O H, Feys D, Wallevik J E, et al. Avoiding inaccurate interpretations of rheological measurements for cement-based materials[J]. Cement and Concrete Research, 2015, 78: 100-109.

Papanastasiou T C. Flows of materials with yield[J]. Journal of rheology, 1987, 31(5): 385-404.

Balmforth N J, Frigaard I A, Ovarlez G. Yielding to stress: recent developments in viscoplastic fluid mechanics[J]. Annual review of fluid mechanics, 2014, 46(1): 121-146.

Barnes H A. The yield stress—a review or ‘παντα ρει’—everything flows?[J]. Journal of non-newtonian fluid mechanics, 1999, 81(1-2): 133-178.

Mandal R, Panda S K, Nayak S. Rheology of Concrete: Critical Review, recent Advancements, and future prospectives[J]. Construction and Building Materials, 2023, 392: 132007.

Casson N. Rheology of disperse systems[J]. Flow Equation for Pigment Oil Suspensions of the Printing Ink Type. Rheology of Disperse Systems, 1959: 84-102.

Damineli B L, John V M, Lagerblad B, et al. Viscosity prediction of cement-filler suspensions using interference model: A route for binder efficiency enhancement[J]. Cement and Concrete Research, 2016, 84: 8-19.

Wang J, Yan S, Wen H, et al. Time-varying viscosity fractal derivative model for ultraslow creep of concrete[J]. Engineering Fracture Mechanics, 2025: 110868.

Zhu J, Zhou Y, Li C, et al. A qualitative approach to describe the viscosity of flowable concrete made with manufactured sand containing different microfines[J]. Construction and Building Materials, 2024, 451: 138858.

Yang J, Zhao H, Zeng J, et al. The Influence of Chemical Admixtures on the Fluidity, Viscosity and Rheological Properties of Ultra-High Performance Concrete[J]. Fluid Dynamics & Materials Processing, 2024, 20(10).

Wu C R, Tang W, Zhan B J, et al. Feasibility study on using red mud as a viscosity-modifying agent for self-compacting concrete[J]. Construction and Building Materials, 2024, 445: 137871.

Anjneya K, Deb A. A review of the discrete element method for modelling the rheology of fresh concrete[J]. Recent Advances in Computational and Experimental Mechanics, Vol—I: Select Proceedings of ICRACEM 2020, 2022: 81-95.

White C, Lees J M. Yield stress prediction from 3D reconstruction of fresh concrete slump[J]. Cement and Concrete Research, 2023, 174: 107331.

Asri Y E L, Benaicha M, Zaher M, et al. Prediction of plastic viscosity and yield stress of self-compacting concrete using machine learning technics[J]. Materials Today: Proceedings, 2022, 59: A7-A13.

Zhou F P, Lydon F D, Barr B I G. Effect of coarse aggregate on elastic modulus and compressive strength of high performance concrete[J]. Cement and concrete research, 1995, 25(1): 177-186.

Hansen T C. Strength, elasticity and creep as related to the internal structure of concrete[C]//Chemistry of cement, Proceedings of fourth international symposium, Monograph. 1960, 2: 709-723.

Zhong S, Chen Z. Properties of latex blends and its modified cement mortars[J]. Cement and Concrete Research, 2002, 32(10): 1515-1524.

Counto U J. The effect of the elastic modulus of the aggregate on the elastic modulus, creep and creep recovery of concrete[J]. Magazine of concrete research, 1964, 16(48): 129-138.

Gao Y, Han X, Su X. Analysis of applicability and influencing factors of elastic modulus prediction model of lightweight aggregate concrete[J]. Construction and Building Materials, 2025, 462: 140022.

Liu X, Zhang X, Yan P. Prediction model for elastic modulus of recycled concrete based on properties of recycled coarse aggregate and cementitious materials[J]. Case Studies in Construction Materials, 2024, 21: e04058.

Heirman G, Vandewalle L, Van Gemert D, et al. Influence of mineral additions and chemical admixtures on the rheological behaviour of powder-type self-compacting concrete[C]//Proc. of the 5th Int. RILEM Symp. on Self-Compacting Concrete (SCC2007). RILEM Publications SARL; Bagneux, 2007: 329-334.

Jiao D, Shi C, Yuan Q, et al. Effect of constituents on rheological properties of fresh concrete-A review[J]. Cement and concrete composites, 2017, 83: 146-159.

Boukendakdji O, Kenai S, Kadri E H, et al. Effect of slag on the rheology of fresh self-compacted concrete[J]. Construction and Building Materials, 2009, 23(7): 2593-2598.

Park C K, Noh M H, Park T H. Rheological properties of cementitious materials containing mineral admixtures[J]. Cement and concrete research, 2005, 35(5): 842-849.

TANG X, CAI Y, WEN J, et al. Correlation between slump flow and rheological parameters of compound pastes with high volume of ground slag[J]. Journal of the Chinese Ceramic Society, 2014, 42(5): 648-652.

Zhang X, Han J. The effect of ultra-fine admixture on the rheological property of cement paste[J]. Cement and concrete research, 2000, 30(5): 827-830.

Laskar A I, Talukdar S. Rheological behavior of high performance concrete with mineral admixtures and their blending[J]. Construction and Building materials, 2008, 22(12): 2345-2354.

Rahman M K, Baluch M H, Malik M A. Thixotropic behavior of self compacting concrete with different mineral admixtures[J]. Construction and building materials, 2014, 50: 710-717.

Vance K, Kumar A, Sant G, et al. The rheological properties of ternary binders containing Portland cement, limestone, and metakaolin or fly ash[J]. Cement and Concrete Research, 2013, 52: 196-207.

De Larrard F, Sedran T, Hu C, et al. Evolution of the workability of superplasticised concretes: assessment with the BTRHEOM rheometer[M]//Production methods and workability of concrete. CRC Press, 2004: 389-400.

De Larrard F, Sedran T, Hu C, et al. Evolution of the workability of superplasticised concretes: assessment with the BTRHEOM rheometer[M]//Production methods and workability of concrete. CRC Press, 2004: 389-400.

Keating J, Hannant D J. The effect of rotation rate on gel strength and dynamic yield strength of thixotropic oil well cements measured using a shear vane[J]. Journal of Rheology, 1989, 33(7): 1011-1020.

Martínez-Padilla L P, Quemada D. Baffled cup and end-effects of a vane-in-a-large cup rheometer for Newtonian fluids[J]. Journal of food engineering, 2007, 80(1): 24-32.

Hočevar A, Kavčič F, Bokan-Bosiljkov V. Rheological parameters of fresh concrete-Comparison of rheometers[J]. Gradjevinar, 2013, 65(2): 99-109.

Cardoso de Castro C S, Santo Filho D M E, Siqueira J R R, et al. Evaluation of the metrological performance of two kinds of rotational viscometers by means of viscosity reference materials[J]. Journal of Petroleum Science and Engineering, 2016, 138: 292-297.

Nguyen T, Miska S, Yu M, et al. Experimental study of dynamic barite sag in oil-based drilling fluids using a modified rotational viscometer and a flow loop[J]. Journal of Petroleum Science and Engineering, 2011, 78(1): 160-165.

Kawatra S K, Bakshi A K, Miller Jr T E. Rheological characterization of mineral suspensions using a vibrating sphere and a rotational viscometer[J]. International Journal of Mineral Processing, 1996, 44: 155-165.

Liang X, Li J, Li Z, et al. A Critical Review of Rheological Testing Methods for Fresh Concrete[J]. Journal of Building Engineering, 2025: 112096.

Zhang Y, Liu X, Wang J, et al. Recognition of the free slump in dry concrete mix: A 3D-digital image correlation test and the spatiotemporal variability[J]. Cement and Concrete Composites, 2025, 160: 106012.

Zheng B, Zhao X, Wang J, et al. Analysis of the slump test for on-site yield stress measurement of thickened tailings[J]. Case Studies in Construction Materials, 2024, 21: e03885.

Downloads

Published

2025-05-10

How to Cite

卞宇轩, 郭可敖, 胡世聪, 李英杰, 王在林, & 邵建文. (2025). 水泥基材料流变性能研究进展. 中国科学与技术学报, 1(1), 240–253. https://doi.org/10.70693/cjst.v1i1.909