地聚物橡胶混凝土多尺度力学行为研究进展

地聚物橡胶混凝土多尺度力学行为研究进展

Authors

  • 郭可敖 鲁东大学
  • 卞宇轩 鲁东大学
  • 白佳琪 鲁东大学
  • 邵建文 鲁东大学

DOI:

https://doi.org/10.70693/cjst.v1i1.908

Keywords:

地聚物;废旧橡胶;混凝土;多尺度;力学行为;微观结构

Abstract

高性能可持续建筑材料的市场需求正随着全球工业化和城市化的快速发展而持续攀升,废旧轮胎处理问题已成为全球性资源与环境问题。地聚物混凝土因其能耗低,污染小成为研究的热点之一。但其脆性本质问题限制了其在工程领域的广泛应用。废旧轮胎经碾压破碎后加工成橡胶颗粒,作为柔性材料有望改善地聚物混凝土的脆性本征,且地聚物胶凝基质可以为橡胶颗粒的表面处理提供有益的碱性环境,适量的表面刻蚀可增大橡胶颗粒与基质的接触面积。地聚物胶凝基质与橡胶颗粒的有机结合已成为地聚物混凝土研究的新方向。为此,本文从宏观、细观、微观尺度系统总结分析了地聚物橡胶混凝土(Rubberized geopolymer concrete,RGC)基本力学性能(抗压强度、劈裂抗拉强度、抗冲击性能)及界面微结构特性的研究进展。通过多尺度关联分析,揭示了宏观力学性能与界面过渡区、孔隙结构及微观化学键合的内在联系,阐明了橡胶-基体界面键合及水化产物结晶机制对材料性能的影响规律。针对不同尺度研究中存在的不足,提出未来研究的方向与建议,旨在为橡胶-地聚物符合材料的设计与应用提供理论依据。

References

Yildizel S A, Tayeh B A, Calis G. Experimental and modelling study of mixture design optimisation of glass fibre-reinforced concrete with combined utilisation of Taguchi and Extreme Vertices Design Techniques[J]. Journal of Materials Research and Technology, 2020, 9(2): 2093-2106. DOI: https://doi.org/10.1016/j.jmrt.2020.02.083

杜运兴, 姚裕珠, 李艳秋, 等. 纯扭作用下地聚物混凝土梁静力性能试验研究[J]. 混凝土, 2025(1): 15-21. DOI: https://doi.org/10.69979/3041-0673.24.11.029

宋广伟. 基于微界面改性的橡胶混凝土力学性能研究[D]. 南京: 南京林业大学, 2024.

章定文, 王安辉. 地聚合物胶凝材料性能及工程应用研究综述[J]. 建筑科学与工程学报, 2020, 37(5): 13-38.

Erman T. Sustainable rubberized pervious concrete[D]. Middle East Technical University, 2023.

赖冬明. 地聚物橡胶混凝土的抗冲击及抗冻融试验研究[D]. 广州: 广东工业大学, 2021.

郑邦容, 唐延丰, 李佳骏, 等. 橡胶混凝土力学性能与耐久性能研究进展[J]. 混凝土与水泥制品,2022, (09): 88-91.

刘日鑫, 侯文顺, 徐永红, 等. 废橡胶颗粒对混凝土力学性能的影响[J]. 建筑材料学报, 2009, 12(3): 341-344.

刘春生. 橡胶集料混凝土的研究与应用[D]. 天津: 天津大学, 2006.

Zhang B, Feng Y, Zhou X, et al. Dynamic mechanical behaviour and life cycle assessment of rubberised solid waste-based geopolymer concrete[J]. Journal of Cleaner Production, 2025, 501: 145247. DOI: https://doi.org/10.1016/j.jclepro.2025.145247

谢建和, 李自坚, 孙明炜. 硅粉对纤维橡胶再生混凝土抗压性能影响试验[J]. 建筑科学与工程学报, 2016, 33(03): 72-77.

高丹盈, 陈嘉伟, 王一泓. 高温中纤维纳米改性橡胶混凝土力学性能试验研究[J]. 天津大学学报(自然科学与工程技术版), 2018, 51(S1): 65-72.

Miller N M, Tehrani F M. Mechanical properties of rubberized lightweight aggregate concrete[J]. Construction and Building Materials, 2017, 147: 264-271. DOI: https://doi.org/10.1016/j.conbuildmat.2017.04.155

Li K, Du S, Yuan S, et al. Study on the basic mechanical properties, dynamic properties, and frost resistance of rubber recycled aggregate concrete[J]. Construction and Building Materials, 2025, 471: 140671. DOI: https://doi.org/10.1016/j.conbuildmat.2025.140671

赖大德. 用于结构防护的纤维橡胶混凝土抗冲击研究[D]. 杭州: 浙江大学,2023.

陈永升. 大流动性钢纤维橡胶混凝土抗拉及抗冲击性能试验研究[D]. 郑州: 华北水利水电大学,2023.

Yoo D Y, Banthia N, Yoon Y S. Impact Resistance of Reinforced Ultra-High-Performance Concrete Beams with Different Steel Fibers[J]. ACI Structural Journal, 2017, 114(1): 113-124. DOI: https://doi.org/10.14359/51689430

Bindiganavile V, Banthia N, Aarup B. Impact response of ultra-high-strength fiber-reinforced cement composite[J]. Materials Journal, 2002, 99(6): 543-548. DOI: https://doi.org/10.14359/12363

涂天驰. 超高性能混凝土的抗冲磨性能研究[D]. 广州: 华南理工大学, 2018.

Li J, Wang X, Chen D, et al. Design and application of UHPC with high abrasion resistance[J]. Construction and Building Materials, 2021, 309: 125141. DOI: https://doi.org/10.1016/j.conbuildmat.2021.125141

Mohsin Z H, Hilo A N, Al-Gasham T S, et al. Experimental study on the depth of abrasion in hydraulic structures using samples of geopolymer concrete[J]. Materials Today: Proceedings, 2022, 56: 1964-1971. DOI: https://doi.org/10.1016/j.matpr.2021.11.285

Cheyad S M, Hilo A N, Al-Gasham T S. Comparing the abrasion resistance of conventional concrete and geopolymer samples[J]. Materials Today: Proceedings, 2022, 56: 1832-1839. DOI: https://doi.org/10.1016/j.matpr.2021.11.029

Ranade R, Li V C, Heard W F, et al. Impact resistance of high strength-high ductility concrete[J]. Cement and Concrete Research, 2017, 98: 24-35. DOI: https://doi.org/10.1016/j.cemconres.2017.03.013

Smith-Gillis R, Lopez-Anido R, Rushing T S, et al. Development of thermoplastic composite reinforced ultra-high-performance concrete panels for impact resistance[J]. Materials, 2021, 14(10): 2490:1-16. DOI: https://doi.org/10.3390/ma14102490

彭玉娇. 纳米纤维素晶体对水泥基材料水化和力学性能的影响研究[D]. 济南: 山东建筑大学,2021.

Wang R, Gao X, Huang H, et al. Influence of rheological properties of cement mortar on steel fiber distribution in UHPC[J]. Construction and Building Materials, 2017, 144: 65-73. DOI: https://doi.org/10.1016/j.conbuildmat.2017.03.173

Dancygier A N, Yankelevsky D Z, Jaegermann C. Response of high performance concrete plates to impact of non-deforming projectiles[J]. International Journal of Impact Engineering, 2007, 34(11): 1768-1779. DOI: https://doi.org/10.1016/j.ijimpeng.2006.09.094

Zhang M H, Shim V P W, Lu G, et al. Resistance of high-strength concrete to projectile impact[J]. International Journal of Impact Engineering, 2005, 31(7): 825-841. DOI: https://doi.org/10.1016/j.ijimpeng.2004.04.009

Zhang L, Feng M, Liu B, et al. Multi-scale study on the crack resistance and energy dissipation mechanism of modified rubberized concrete[J]. Construction and Building Materials, 2024, 457: 139448. DOI: https://doi.org/10.1016/j.conbuildmat.2024.139448

Feng L, Chen X, Zhang J, et al. Experimental and mesoscopic investigation of self-compacting rubberized concrete under dynamic splitting tension[J]. Journal of Building Engineering, 2022, 57: 104942. DOI: https://doi.org/10.1016/j.jobe.2022.104942

Segre N, Joekes I. Use of tire rubber particles as addition to cement paste[J]. Cement and concrete research, 2000, 30(9): 1421-1425. DOI: https://doi.org/10.1016/S0008-8846(00)00373-2

Siddique R, Naik T R. Properties of concrete containing scrap-tire rubber–an overview[J]. Waste management, 2004, 24(6): 563-569. DOI: https://doi.org/10.1016/j.wasman.2004.01.006

杨刚, 葛浪潮, 谢森辉, 等. 硅粉-橡胶混凝土的力学性能及细观模拟[J]. 硅酸盐通报,2025,44(03):1032-1040.

牛紫娟. 基于正交试验法的PVA纤维增强橡胶混凝土宏细观力学性能机理研究[D]. 郑州: 河南工业大学,2024..

朱星曈. 基于随机集料模型和X-CT试验的橡胶混凝土细观损伤研究[D]. 徐州: 中国矿业大学,2022.

罗麒锐. 基于粘结裂缝模型的橡胶混凝土细观性能研究[D]. 西安: 西安建筑科技大学,2019.

郑邦容, 唐延丰, 李佳骏, 等. 橡胶混凝土力学性能与耐久性能研究进展[J]. 混凝土与水泥制品,2022,(09):88-91.

翟胜田.橡胶集料混凝土材料的设计、制备与性能研究[D]. 南京: 东南大学,2023.

于双鹏, 杨启容, 陶礼, 等. 基于分子动力学模拟的轮胎橡胶气相热解产物反应机理[J]. 化工进展,2021, 40(06): 3119-3131.

徐业守, 徐赵东, 郭迎庆, 等. 基于分子动力学模拟的天然橡胶黏弹性材料力学行为[J]. 东南大学学报:自然科学版, 2021, 51(03): 365-370.

Onuaguluchi O. Effects of surface pre-coating and silica fume on crumb rubber-cement matrix interface and cement mortar properties[J]. Journal of cleaner Production, 2015, 104: 339-345. DOI: https://doi.org/10.1016/j.jclepro.2015.04.116

Jiao B, Pan B, Che T. Evaluating impacts of desulfurization and depolymerization on thermodynamics properties of crumb rubber modified asphalt through molecular dynamics simulation[J]. Construction and Building Materials, 2022, 323: 126360. DOI: https://doi.org/10.1016/j.conbuildmat.2022.126360

Xu J, Chen X, Yu B. Experimental and simulation study of rubber/cement paste interface modified by waste paint and silica in two stages[J]. Construction and Building Materials, 2023, 382: 131323. DOI: https://doi.org/10.1016/j.conbuildmat.2023.131323

于娇. 基于分子动力学的硅烷偶联剂改性橡胶水泥基材料设计与性能研究[D]. 青岛: 青岛理工大学,2021.

Jing Y, Zhang C, Lin G, et al. Studies on the mechanical properties of rubber concrete reinforced with high-temperature stirred pretreated waste rubber particles[J]. Construction and Building Materials, 2024, 440: 137516. DOI: https://doi.org/10.1016/j.conbuildmat.2024.137516

杨涛. 改性橡胶混凝土微细观结构与抗渗性能研究[D]. 邯郸: 河北工程大学,2023.

Kashani A, Ngo T D, Hemachandra P, et al. Effects of surface treatments of recycled tyre crumb on cement-rubber bonding in concrete composite foam[J]. Construction and Building Materials, 2018, 171: 467-473. DOI: https://doi.org/10.1016/j.conbuildmat.2018.03.163

Downloads

Published

2025-04-29

How to Cite

郭可敖, 卞宇轩, 白佳琪, & 邵建文. (2025). 地聚物橡胶混凝土多尺度力学行为研究进展. 中国科学与技术学报, 1(1), 221–236. https://doi.org/10.70693/cjst.v1i1.908
Loading...