智能技术赋能下大学英语听力教学改革与实践——基于OBE与O-AMAS的融合模式研究

Authors

  • 周安 Chang'an University
  • 尚怡琳

DOI:

https://doi.org/10.70693/cjst.v2i1.1819

Keywords:

成果导向教育(OBE), O-AMAS模型, 人工智能(AI), 英语听力教学, 多模态评价, 教学闭环

Abstract

本研究旨在构建并验证一个整合了成果导向教育(OBE)、O-AMAS有效教学模型与人工智能(AI)技术的创新型大学英语听力教学模式。该模式的核心是创建一个由AI驱动的多模态评价体系,并将其深度嵌入O-AMAS教学闭环,以实现“以评促学”。研究采用混合方法设计,对某高校两个平行班级(实验组N=52,对照组N=50)进行了为期16周的教学实验。实验组采用新型融合模式,对照组采用传统听力教学模式。数据收集包括听力水平前后测、AI平台学习行为日志、课堂观察以及半结构化访谈。量化分析显示,实验组在后测听力成绩上显著高于对照组(p<.01),且在听力微技能“细节抓取”和“推理判断”上进步尤为明显。质性数据分析揭示了该模式在提升学习投入度、提供及时反馈和促进目标清晰度方面的积极影响。研究表明,该“OBE-AI-O-AMAS”融合框架通过建立动态、精准的评价-教学闭环,能有效促进EFL听力能力的生成性发展,为智能时代的语言技能教学改革提供了可操作的路径与实证依据。

References

Spady WG. Outcome-Based Education: Critical Issues and Answers[M]. American Association of School Administrators, 1994.

Biggs J, Tang C. Teaching for Quality Learning at University[M]. 4th ed. McGraw-Hill Education, 2011.

Li X, Song N. The O-AMAS teaching model: A practical framework for active learning in higher education[J]. Journal of Education and Learning, 2021, 10(3): 45-55.

郑艳群. 技术赋能的语言学习研究:路径与议题[J]. 现代外语, 2020, 43(1): 111-122.

Xu J, Fan Y. The design and implementation of an AI-enabled smart learning environment for EFL listening[J]. Computer Assisted Language Learning, 2022, 35(5-6): 1215-1241.

张文霞, 李 雪. 成果导向教育(OBE)理念下的大学英语课程体系重构研究[J]. 外语界, 2019, (4): 12-19.

Kennedy D. Writing and Using Learning Outcomes: A Practical Guide[M]. University College Cork, 2007.

Vandergrift L, Goh CCM. Teaching and Learning Second Language Listening: Metacognition in Action[M]. Routledge, 2012.

Wang L, Huang R. Evaluating the impact of the O-AMAS model on student engagement and learning outcomes in a blended EFL course[J]. International Journal of Educational Technology in Higher Education, 2022, 19(1): 58.

Warschauer M, Healey D. Computers and language learning: An overview[J]. Language Teaching, 1998, 31(2): 57-71.

Chapelle CA. Technology-mediated language learning[M]//Liontas JI. The TESOL Encyclopedia of English Language Teaching. Wiley, 2019: 1-7.

Moustroufas N, Digalakis V. Automatic pronunciation evaluation of foreign speakers using unknown text[J]. Computer Speech & Language, 2007, 21(1): 219-230.

Wang Y, Young SSC. Effectiveness of adaptive learning in EFL listening: A study of MyE.T[J]. Journal of Educational Technology & Society, 2015, 18(2): 360-373.

Chen MR, Hwang GJ. Effects of a concept mapping‑based flipped learning approach on EFL students' English speaking performance, critical thinking awareness and speaking anxiety[J]. British Journal of Educational Technology, 2020, 51(3): 817-834.

Godwin-Jones R. Big data and language learning: Opportunities and challenges[J]. Language Learning & Technology, 2021, 25(1): 4-19.

O'Brien MG, Hegelheimer V. Integrating CALL into the classroom: The role of podcasting in an ESL listening strategies course[J]. ReCALL, 2007, 19(2): 162-180.

Yang YF. Developing a multimodal dataset for EFL listening assessment using AI techniques[J]. Journal of Language Teaching and Research, 2021, 12(5): 711-720.

Harden RM. Learning outcomes and instructional objectives: is there a difference?[J]. Medical Teacher, 2002, 24(2): 151-155.

Hattie J, Timperley H. The power of feedback[J]. Review of Educational Research, 2007, 77(1): 81-112.

顾小清, 胡艺龄. 从辅助到赋能:智能教育发展范式的嬗变与突破[J]. 开放教育研究, 2018, 24(5): 31-39.

周 安, 尚怡琳. O-AMAS有效教学模型助力高校英语学科课程改革[J]. 中国科学与技术学报, 2025, 1(3): 128-133.

吴 砥, 李 环, 尉小荣, 等. 教育数字化转型:国际背景、发展需求与推进路径[J].中国远程教育, 2022, (07): 21-27+58+79.

Downloads

Published

2025-12-28

How to Cite

周安, & 尚怡琳. (2025). 智能技术赋能下大学英语听力教学改革与实践——基于OBE与O-AMAS的融合模式研究. 中国科学与技术学报, 2(1), 69–77. https://doi.org/10.70693/cjst.v2i1.1819