人工智能驱动儿科医学教育全方面智能化转型研究
DOI:
https://doi.org/10.70693/cjst.v1i4.1675Keywords:
人工智能;儿科医学教育;智能化;虚拟患者;疾病知识图谱;临床决策树Abstract
因儿童生理与病理特征的特殊性,儿科医学教育长期面临三大核心挑战:临床操作风险居高不下,儿童机体脆弱性增加了穿刺、急救等操作的难度与失误后果;疾病表现具有强异质性,同病异症、异病同症现象普遍,加大诊断教学复杂度;医患沟通涉及患儿、家长等多方,情绪疏导与信息传递的复杂性远超成人科室。随着人工智能(AI)技术的飞速发展,为破解这些难题提供了创新路径。本文通过系统检索与梳理国内外相关文献,构建AI驱动儿科医学教育智能化的理论框架,剖析虚拟仿真训练、智能诊断辅助、医患沟通模拟等技术应用路径,探讨在实践培养中如何借助AI提升医学生的临床操作熟练度、疾病鉴别能力与人文沟通素养,进而展望未来发展趋势,旨在挖掘AI提升儿科医学生综合能力的潜在价值,为培养掌握先进技术、兼具人文温度,适应新时代需求的儿科医生提供理论与实践参考。
References
一 鸣, 李一卿. 浅析儿科医疗行业现状及医患沟通存在的主要问题 [J]. 中国城乡企业卫生, 2025, 40 (06): 238-240.
RIZZETTO F, BERNAREGGI A, RANTAS S, et al. Immersive Virtual Reality in surgery and medical education: Diving into the future [J]. American journal of surgery, 2020, 220(4): 856-857.
Rajkomar A. et al. Machine Learning in Medicine. NEJM, 2019, 380(14): 1347-1358.
EL ARAB R A, AL MOOSA O A, SAGBAKKEN M, et al. Integrative review of artificial intelligence applications in nursing: education, clinical practice, workload management, and professional perceptions [J]. Frontiers in public health, 2025, 13: 1619378.
袁 婧, 翟雪松, 吴 飞, 等. 基于虚拟教研室的高校人工智能专业(AI+X方向)建设——以浙江大学为例[J].现代教育技术, 2024, 34(05): 123-133.
Chen JH. et al. AI-Driven Virtual Patients for Pediatric Training. JAMA Pediatrics, 2021, 175(6): 612-619.
ATEFEH S. Barriers and facilitators of pain management in children: a scoping review [J]. BMC anesthesiology, 2025, 25(1): 148.
GHOLAMZADEH M, ABTAHI H, SAFDARI R. The Application of Knowledge-Based Clinical Decision Support Systems to Enhance Adherence to Evidence-Based Medicine in Chronic Disease [J]. Journal of healthcare engineering, 2023, 2023: 8550905.
许美琳, 全 锐, 欧阳欢, 等. 基于NLP模型的医学实践育人模式研究[J]. 医学教育管理, 2024, 10(05): 609-613.
冯文华, 任朝楠, 罗 平, 等. ChatGPT辅助儿科诊疗与医患沟通的初步探索[J]. 华西医学, 2024, 39(08): 1273-1276.
CHEN Z, LIANG N, ZHANG H, et al. Harnessing the power of clinical decision support systems: challenges and opportunities [J]. Open heart, 2023, 10(2).136.
VO V, CHEN G, AQUINO Y S J, et al. Multi-stakeholder preferences for the use of artificial intelligence in healthcare: A systematic review and thematic analysis [J]. Social science & medicine (1982), 2023, 338: 116357.
王茹俊, 王 丹. ChatGPT介入医学教育的伦理风险及应对策略 [J]. 医学与哲学, 2024, 45 (02): 76-81.
BEAM A L, KOHANE I S. Big Data and Machine Learning in Health Care [J]. Jama, 2018, 319(13): 1317-1318.
YANG Y, CUI Y U, WANG Y T, et al. Interpretation of the WHO's "Ethics and Governance of Artificial Intelligence for Health: Guidance on Large Multi-Modal Models" and its implications for China [J]. Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine], 2025, 59(6): 960-969.
陈 宏, 宋倩男, 李 锐, 等. 人工智能视阈下中医药高等院校中医儿科学专业型硕士“五术”培养策略研究 [J]. 医学研究杂志, 2025, 54 (03): 198-202.
PRICE W N, 2ND, COHEN I G. Privacy in the age of medical big data [J]. Nature medicine, 2019, 25(1): 37-43.
魏国辉, 闵巍巍, 马志庆. 中医药院校“人工智能+”交叉学科群建设探索与实践 [J]. 中国医药导报, 2023, 20 (28): 84-87.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 高芳芳, 阚璇

This work is licensed under a Creative Commons Attribution 4.0 International License.














