基于水文测绘与机器学习的北京北运河北关拦河闸水位与流量预测研究
DOI:
https://doi.org/10.70693/cjst.v1i3.1518Keywords:
水位预测;流量预测;机器学习;时间序列模型Abstract
本文研究了基于无人机测量的河道水位与流量预测方法,重点探讨了机器学习模型,特别是ARMA、ARIMA、SARIMA和VAR模型在水位和流量预测中的应用。通过高精度传感器的协同工作,获取河道的水位、流速等数据,结合机器学习模型进行数据处理和预测。 本研究使用无人机技术采集实际水位和流量数据,通过ARMA、ARIMA、SARIMA和VAR模型进行预测建模,采用RMSE、R²、MAE等误差评估指标对模型性能进行定量分析。结果表明,SARIMA模型在捕捉水位和流量变化趋势方面表现最佳,其误差控制在合理范围内,适用于本数据集的预测任务。而ARMA模型在处理平稳数据时表现优异,ARIMA和VAR模型则在数据波动较大或存在复杂依赖关系时表现较差。本研究为河道水位与流量的预测提供了有效的技术手段,并对水资源管理提供了参考。
References
[1] Xu Y ,He C ,Guo Z , et al.Simulation of Water Level and Flow of Catastrophic Flood Based on the CNN-LSTM Coupling Network[J].Water,2023,15(13):
[2] Bin D ,Pan L ,Jie R C , et al.Hybrid metaheuristic machine learning approach for water level prediction: A case study in Dongting Lake[J].Frontiers in Earth Science,2022,10
[3] 张必飞, 李旭彬, 郑如意, 等. 无人机测量在建筑工程中的应用研究[J]. 建筑技术开发, 2025, 52(10): 1-3.
[4] 朱帅, 林士飏. 强化学习动态路径规划降低建筑构件运输的研究与应用[J].中国科学与技术学报, 2025, 1(1): 54-70
[5] 江赜伟, 杨士红, 柳真杨, 等. 基于机器学习的排涝闸站雨后水位预测[J]. 灌溉排水学报, 2022, 41(04): 135-140.
[6] 刘晓阳, 姚华明, 张海荣, 等. 基于机器学习的三峡水库小时尺度坝前水位预测[J]. 人民长江, 2023, 54(02): 147-151.
[7] Şen S G. Machine Learning-Based Water Level Forecast in a Dam Reservoir: A Case Study of Karaçomak Dam in the Kızılırmak Basin, Türkiye[J]. Sustainability, 2025, 17(18): 1-23.
[8] Bramm A M, Matrenin P V, Khalyasmaa A I. A Review of XAI Methods Applications in Forecasting Runoff and Water Level Hydrological Tasks[J]. Mathematics, 2025, 13(17): 2830.
[9] Wang Q, Peng Y, Li M, et al. Dynamic Control of the Flood Limited Water Level in Reservoir Considering the Uncertainty Error Domain of Forecast Information[J]. Water Resources Management, 2025: 1-24.
[10] 王震. 航道养护工程测量中无人机航空摄影测量技术运用分析[J]. 珠江水运, 2025, (18): 124-126.
[11] 周彧婕, 颜剑, 吴晓亚, 等. 基于无人机水位识别的长距离围堤排水沟大渗流量监测[J/OL].人民珠江,1-12[2025-10-11].
[12] Science - Water Science and Technology; Data on Water Science and Technology Reported by Researchers at University of Perugia (Water Level Measurements from Drones: A Pilot Case Study at a Dam Site)[J].Journal of Engineering,2018,246-.
[13] Ridolfi E , Manciola P. Water Level Measurements from Drones: A Pilot Case Study at a Dam Site[J].Water, 2018, 10(3): 297-297.
[14] Sun J , Jiang G , Jiang Y, et al. A single-sensor leak localization method for high-temperature and high-pressure steam superheater pipes based on VMD-ARMA-SSMUSIC[J]. Applied Thermal Engineering, 2025, 280(P2): 128210-128210.
[15] Nagpal H,Soppelsa A, Madsen H, et al. An adaptive multi-seasonal ARIMA approach for domestic hot water load forecasting: A pilot study[J]. Energy & Buildings, 2025, 347(PA): 116226-116226.
[16] 陈佳, 曹雪娟, 王靖,等. 不同流域典型水库蓄能趋势分析模型适应性研究[J/OL]. 中国农村水利水电, 1-14[2025-10-11].
[17] 徐雨坷, 孙文婷, 段金廒, 等. 基于VAR模型的枸杞价格指数波动趋势及影响因素分析[J/OL]. 北方园艺, 1-11[2025-10-11].
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 刁明莉

This work is licensed under a Creative Commons Attribution 4.0 International License.














