纤维增强再生骨料混凝土研究现状分析

Authors

  • 张伟绅 山东理工大学
  • 杨学超 山东理工大学

DOI:

https://doi.org/10.70693/cjst.v1i2.1097

Keywords:

再生骨料混凝土;废弃纤维;力学性能;机理分析

Abstract

再生骨料混凝土在资源节约与碳减排方面潜力巨大,但其固有性能缺陷限制了推广应用。纤维增强技术为提升再生骨料混凝土性能提供了有效途径。本文系统分析了再生骨料因表面残留砂浆导致的性能劣化特征,如强度降低、吸水率与孔隙率增高,并综述了聚丙烯纤维、聚乙烯醇纤维、玄武岩纤维及碳纤维等多种纤维对再生骨料混凝土抗压、劈裂抗拉、抗折强度及韧性等力学性能的改善作用与影响规律,同时揭示了纤维通过桥接裂纹、强化界面过渡区等微观机制提升性能的机理。研究指出,纤维掺量存在阈值效应,过量或分布不均可能产生负面影响。未来研究需深入探索不同纤维的协同效应、优化组合及其在严苛环境下的长期性能与耐久性,以推动纤维增强再生骨料混凝土的实际应用。

References

程鹏,赵大威.再生骨料绿色混凝土的力学性能研究[J].河北建筑工程学院学报,2023,41(04):78-82.

韦庆华.重复荷载作用下再生混凝土轴压及与钢筋间粘结-滑移性能研究[D].广西大学,2020.

Su T, Wang C, Cao F, et al. An overview of bond behavior of recycled coarse aggregate concrete with steel bar[J]. Reviews on Advanced Materials Science, 2021, 60(1): 127-144. DOI: https://doi.org/10.1515/rams-2021-0018

王社良,景龙平,张博,等.砖含量对再生骨料性能影响的试验研究[J].混凝土,2011,(02):83-85+88.

刘子振,肖斌,李晓龙,等.废旧烧结砖再生混凝土性能试验研究[J].混凝土,2011,(03):72-74.

Ashraf M J, Idrees M, Akbar A. Performance of silica fume slurry treated recycled aggregate concrete reinforced with carbon fibers[J]. Journal of Building Engineering, 2023, 66: 105892. DOI: https://doi.org/10.1016/j.jobe.2023.105892

Kazmi S M S, Munir M J, Wu Y F, et al. Axial stress-strain behavior of macro-synthetic fiber reinforced recycled aggregate concrete[J]. Cement and Concrete Composites, 2019, 97: 341-356. DOI: https://doi.org/10.1016/j.cemconcomp.2019.01.005

Rezazadeh M, Carvelli V. A damage model for high-cycle fatigue behavior of bond between FRP bar and concrete[J]. International Journal of Fatigue, 2018, 111: 101-111.

陈爱玖,王静,杨粉.纤维再生混凝土力学性能试验及破坏分析[J].建筑材料学报,2013,16(02):244-248+265.

Althoey F, Zaid O, de-Prado-Gil J, et al. Impact of sulfate activation of rice husk ash on the performance of high strength steel fiber reinforced recycled aggregate concrete[J]. Journal of Building Engineering, 2022, 54: 104610. DOI: https://doi.org/10.1016/j.jobe.2022.104610

李晓路. 玄武岩纤维再生粗骨料混凝土力学性能及抗冻性、干缩性的试验研究[D]. 宁夏大学, 2018.

Du X, Li Y, Si Z, et al. Effects of basalt fiber and polyvinyl alcohol fiber on the properties of recycled aggregate concrete and optimization of fiber contents[J]. Construction and Building Materials, 2022, 340: 127646. DOI: https://doi.org/10.1016/j.conbuildmat.2022.127646

Bai W, Wang X, Yuan C, et al. Study on dynamic mechanical properties and meso-damage mechanism of carbon fibers recycled aggregate concrete under freeze-thaw environment[J]. Journal of Building Engineering, 2023, 79: 107768. DOI: https://doi.org/10.1016/j.jobe.2023.107768

Ardanuy M, Claramunt J, Toledo Filho R D. Cellulosic fiber reinforced cement-based composites: A review of recent research[J]. Construction and building materials, 2015, 79: 115-128. DOI: https://doi.org/10.1016/j.conbuildmat.2015.01.035

Rezazadeh M, Carvelli V. A damage model for high-cycle fatigue behavior of bond between FRP bar and concrete[J]. International Journal of Fatigue, 2018, 111: 101-111. DOI: https://doi.org/10.1016/j.ijfatigue.2018.02.012

Liu Y, Ren P, Garcia-Troncoso N, et al. Roles of enhanced ITZ in improving the mechanical properties of concrete prepared with different types of recycled aggregates[J]. Journal of Building Engineering, 2022, 60: 105197. DOI: https://doi.org/10.1016/j.jobe.2022.105197

Zhou J, Kang T, Wang F. Pore structure and strength of waste fiber recycled concrete[J]. Journal of Engineered Fibers and Fabrics, 2019, 14: 1558925019874701. DOI: https://doi.org/10.1177/1558925019874701

Tran N P, Gunasekara C, Law D W, et al. Comprehensive review on sustainable fiber reinforced concrete incorporating recycled textile waste[J]. Journal of Sustainable Cement-Based Materials, 2022, 11(1): 28-42. DOI: https://doi.org/10.1080/21650373.2021.1875273

Rustamov S, Kim S W, Kwon M, et al. Mechanical behavior of fiber-reinforced lightweight concrete subjected to repeated freezing and thawing[J]. Construction and Building Materials, 2021, 273: 121710. DOI: https://doi.org/10.1016/j.conbuildmat.2020.121710

Das C S, Dey T, Dandapat R, et al. Performance evaluation of polypropylene fibre reinforced recycled aggregate concrete[J]. Construction and Building Materials, 2018, 189: 649-659. DOI: https://doi.org/10.1016/j.conbuildmat.2018.09.036

He W, Kong X, Fu Y, et al. Experimental investigation on the mechanical properties and microstructure of hybrid fiber reinforced recycled aggregate concrete[J]. Construction and Building Materials, 2020, 261: 120488. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120488

Nam J, Kim G, Lee B, et al. Frost resistance of polyvinyl alcohol fiber and polypropylene fiber reinforced cementitious composites under freeze thaw cycling[J]. Composites Part B: Engineering, 2016, 90: 241-250. DOI: https://doi.org/10.1016/j.compositesb.2015.12.009

田凯.玄武岩纤维对再生混凝土力学性能的影响研究[J].新型建筑材料,2019,46(06):22-24+103.

Li H, Liebscher M, Ly K H, et al. Effect of electrophoretic deposition of micro-quartz on the microstructural and mechanical properties of carbon fibers and their bond performance toward cement[J]. Journal of Materials Science, 2022, 57(48): 21885-21900. DOI: https://doi.org/10.1007/s10853-022-07989-w

Akbar A, Liew K M. Assessing recycling potential of carbon fiber reinforced plastic waste in production of eco-efficient cement-based materials[J]. Journal of Cleaner Production, 2020, 274: 123001. DOI: https://doi.org/10.1016/j.jclepro.2020.123001

王建超,陆佳韦,周静海,等.碳纤维再生混凝土力学性能的试验研究[J].混凝土,2018,(12):95-99+103.

Gong S, Bai L, Tan Z, et al. Mechanical properties of polypropylene fiber recycled brick aggregate concrete and its influencing factors by gray correlation analysis[J]. Sustainability, 2023, 15(14): 11135. DOI: https://doi.org/10.3390/su151411135

Cui S, Wang T, Zhang Z, et al. Frost resistance and life prediction of recycled brick aggregate concrete with waste polypropylene fiber[J]. Reviews on Advanced Materials Science, 2023, 62(1): 20230154. DOI: https://doi.org/10.1515/rams-2023-0154

Downloads

Published

2025-06-13

How to Cite

张伟绅, & 杨学超. (2025). 纤维增强再生骨料混凝土研究现状分析. 中国科学与技术学报, 1(2), 95–99. https://doi.org/10.70693/cjst.v1i2.1097